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Abstract. Existing exact results for the percolation probability and mean cluster size for compact
percolation near a dry wall are extended to the mean cluster length and the mean number of
contacts with the wall. The results are derived from our previous work on vesicles near an
attractive wall and involve elliptic integrals as opposed to the simple rational forms found for
the percolation probability and cluster size belowpc. The results for the cluster length satisfy
previously conjectured differential equations. A closed expression is conjectured for the mean size
abovepc in terms of a hypergeometric function.

1. Background and notation

Directed compact percolation near a wall which restricts the lateral growth of the cluster has
been described in paper I of this series [7], where earlier work is referred to and a picture of a
typical cluster may be found. The atoms of a cluster occupy the sites of a directed square lattice
which are the points of thet, x plane such thatt > 0, x > 0 andt + x is even. The two bonds
which are directed away from(t, x) connect to the sites(t + 1, x± 1). The wall is represented
by the sitesx = −1 andt odd. Here we consider the dry wall problem in which these sites
are unoccupied. The special case of a random cluster which grows from a seed consisting of a
single atom at(0, 0) will be considered. The growth rule is that site(t, x) is occupied (or wet)
with certainty if both its predecessors(t − 1, x ± 1) are occupied, with probabilityp if just
one of these sites is occupied, and is otherwise unoccupied. Thus the clusters remain compact
or free from the holes which would occur in ordinary directed percolation clusters.

At a given growth stage, in the absence of a wall, the width of the cluster increases by
one with probabilityp2, decreases with probability(1− p)2 or stays the same in two ways,
each with probabilityp(1− p). Since the cluster terminates with a single atom the number
of stages in which the width increases must be the same as the number of stages in which it
decreases so that the probability of occurrence of a given cluster havingt growth stages before
termination isq2(pq)t , whereq = 1− p. The factorq2 is the probability that the cluster,
having reached unit width, finally terminates. The probability thatt growth stages will take
place before termination is therefore simply obtained by multiplying the above probability by
the number of different clusters for which only a single atom is added at thet th stage. This
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is how Domany and Kinzel [5] solved the bulk problem and obtained the scaling form of the
cluster length distribution.

In the presence of a wall, the probability associated with a given cluster must be modified
depending on how many atoms are in contact with the wall. If the site(t, 0) is occupied then
with no wall the site(t + 1,−1) would be unoccupied with probabilityq but with a dry wall
this happens with probability one. Thus the probability of occurrence of a given cluster with
t growth stages andc wall contacts, not counting the seed, isq(pq)tq−c. To determine the
cluster length distribution we must therefore count the number of such clusters. Until recently
[2] this had not been done but some progress had been made using difference equations. Lin
[8] determined the percolation probability and found that the critical exponent changed to
β = 2 instead of the bulk valueβ = 1. In paper I it was shown that this was only the case for
unbiased growth and that a bias towards or away from the wall resulted in the bulk exponent.
In paper II [6] the mean cluster size below the critical probabilitypc = 1

2 was shown to be
a simple rational function with exponentγ = 1 instead of the bulk valueγ = 2, thereby
showing that the scaling size exponent1 = 3 is unchanged by the presence of a wall. It was
also conjectured on the basis of differential approximants that abovepc the mean size of finite
clusters satisfies a linear second-order inhomogeneous differential equation with polynomial
coefficients of degree four. No closed form solution was obtained but the critical behaviour
was determined from the singular points of the differential equation. In the case of the mean
cluster length no closed form solution was found for any value ofp but it was conjectured
to satisfy a differential equation similar in nature to the mean size with an inhomogeneous
term depending on the position ofp in relation topc. From the singular points the critical
behaviour of the mean length was determined and found to have a logarithmic divergence at
pc. The exponentτ = 0, compared withτ = 1 in the bulk, therefore changes in such a way
as to preserve the value of the length scale exponentν‖ = 2.

In this paper we obtain an exact closed form expression for the mean cluster length
and also for the expected number of wall contacts (for finite clusters in the casep > pc).
These expressions involve complete elliptic integrals as in the case of the two-dimensional
Ising model specific heat. The logarithmic divergence of the mean length is confirmed and
a conjecture [II] concerning the constants involved in the asymptotic form is proven. The
mean number of contacts is found to be non-divergent but has an infinite derivative atpc, just
before its maximum value occurs. This behaviour is reminiscent of the susceptibility of the
antiferromagnetic Ising model.

Domany and Kinzel [5] enumerated the number of clusters witht growth stages in the
bulk by noting a correspondence with random walks on the dual lattice. For a cluster which
terminates at(t, x), one walk starts at(0, 1) and follows the motion of the upper edge of the
cluster and terminates at(t, x + 1). The other starts at(0,−1) and follows the motion of the
lower edge arriving at(t, x−1). The number of such pairs of directed parallel non-intersecting
walks was known [4]. By extending the walks to start at(−1, 0) and terminate at(t + 1, x)
a closed ‘staircase polygon’ is formed which can be used as a simple ‘vesicle model’. The
problem is therefore one of enumerating vesicles on a directed square lattice. In the presence
of a wall, the number of wall contacts made by the cluster is the number of times the lower
walk of the surrounding vesicle revisitsx = −1. In [2] the problem of a vesicle in contact
with an attractive wall was solved. In this problem a partition functionVt(κ) is calculated as
the weighted sum over all vesicle configurationsV(t) formed fromt-step walks, giving weight
κc to a configuration, the lower walk of which revisits the wallc times.

Vt(κ) :=
∑
v∈V(t)

κc(v) (1)

wherec(v) is the number of revisits made by the vesiclev, which is also the number of wall
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contacts made by the cluster which it bounds, excluding the source. The variableκ is known
as the wall fugacity and is found to have a critical valueκc = 2 above which the vesicle sticks
to the wall.

The required properties of compact clusters may be obtained from the vesicle grand
partition function

Z(u, κ) :=
∞∑
t=0

Vt(κ)u
t (2)

whereu is known as the length fugacity. The probabilityQ(p) that a compact cluster will be of
finite length is given byqZ(pq, 1/q) from which the percolation probabilityP(p) = 1−Q(p)
may be derived. Thus compact percolation is a special case of the vesicle problem such that
asp varies we move along the ‘percolation line’

u = (κ − 1)/κ2. (3)

The value ofu corresponding to the critical wall fugacity isuc = 1
4 and sinceu = p(1− p)

this corresponds topc = 1
2. Notice thatu as a function ofp achieves its maximum value atpc

so that for compact percolation 06 u 6 1
4. The expected length and number of wall contacts

for compact clusters are determined by the derivatives ofZ with respect tou andκ respectively
and hence to determine these functions it is necessary to know the grand partition function off
the percolation line.

We begin by recalling the results of [2] for vesicles near an attractive wall. In the next
section the wall will be moved tox = 0 so that the walks start at(0, 0) and(0, 2) and weight
κ is given to each return of the lower walk tox = 0.

2. The vesicle partition function

In this section we summarize the derivation of the vesicle partition functionVt(κ) given in [2].
Since the result depends on the single chain partition function we begin with its derivation.

2.1. The single chain partition function

LetUt(x, κ) be the partition for a single chain of lengtht , with one end attached to the surface
and the other fixed at distancex from the surface. In the partition sum a weightκc is given to
a configuration in which the chain makesc contacts with the surface other than the point of
attachment.Ut(x, κ) is the solution of the following equations

Ut(x) = Ut−1(x − 1) +Ut−1(x + 1) for x, t > 0

Ut(0) = κUt−1(1) for t > 0

U0(x) = δx,0 for x > 0

(4)

and may be written in the form

Ut(x, κ) = CT [3tzxG(z)] (5)

where3 = z + z−1 and

G(z) = 1− z2

1− (κ − 1)z2
. (6)

The constant termnotationCT [·] means that the contents of the bracket is to be expanded
aboutz = 0 in powers ofz (including negative powers) and the coefficient ofz0 selected.
Equation (5) was derived in [2] but may be verified by substitution in the defining equations
above.
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2.2. The partition function for two chains

The vesicle partition function is a special case of the two-chain partition functionUt(x1, x2, κ)

where the chains start atx = 0 andx = 2 and end atx1 andx2 after t steps. The chains
are constrained to avoid one another so that only the first chain can contact the surface and a
configuration withc contacts, excluding the first, is given weightκc as above. The equations
to be solved are

Ut(x1, x2) = Ut−1(x1− 1, x2 − 1) +Ut−1(x1 + 1, x2 − 1) +Ut−1(x1− 1, x2 + 1)

+Ut−1(x1 + 1, x2 + 1) for t, x1, x2 > 0

Ut(0, x2) = κ(Ut−1(1, x2 − 1) +Ut−1(1, x2 + 1)) for t, x2 > 0

Ut(x1, x1) = 0 for t > 0

U0(x1, x2) = δx1,0δx2,2 for x1 > 0, x2 > 2.

(7)

It may be verified by substitution, using equations (4), that the solution is expressible in terms
of the one-chain function as follows.

Ut(x1, x2, κ) = Ut(x1, κ)Ut+2(x2, κ)− Ut(x2, κ)Ut+2(x1, κ) (8)

and using (5) gives the constant term formula

Ut(x1, x2, κ) = CT [(3132)
t z
x1
1 z

x2
2 (3

2
2 −32

1)G(z1)G(z2)] (9)

where3i = zi + z−1
i .

2.3. The vesicle partition function

The vesicle partition functionVt(x, κ) restricted to configurations ending atx1 = x, x2 = x+2
is given byUt(x, x + 2, κ). ExpandingG(z1) andG(z2) aboutκ = 1 it was shown in [2]
(equation (4.16)) that

Vt(x, κ) =
∞∑
n=0

(κ − 1)nUt (x, x + 2n + 2, 1). (10)

For givent this is a polynomial inκ sinceUt(x, x + 2n + 2, 1) is zero forn > 1
2(t − x). A

simple interpretation of equation (10) is thatUt(x, x + 2n+ 2, 1) counts vesicles with at leastn
wall contacts and that(κ − 1)n enacts inclusion–exclusion. Substituting from (9), noting that
G(z) = 1− z2 whenκ = 1, and carrying out the sum overn gives

Vt(x, κ) = CT [(3132)
t (z1z2)

xz2
2(3

2
2 −32

1)(1− z2
1)G(z2)]. (11)

Going from (9) to (11) is a major step forward since there is now only one denominator andκ

appears in just one factor instead of two. For event = 2r, further summation over evenx > 0
gives the unrestricted vesicle partition functionvevenr (κ) := V2r (κ)

vevenr (κ) = CT [(3132)
2r z

2
2(3

2
2 −32

1)

1− z2
1z

2
2

(1− z2
1)G(z2)]

= CT [(3132)
2rz−2

1 (z2
1 − z2

2)(1− z2
1)G(z2)]. (12)

Separating the terms involvingz1 andz2 gives

vevenr (κ) = U2r (0, κ)CT [32r
1 (1− z2

1)] + U2r (2, κ)CT [32r
1 (1− z−2

1 )] (13)

= Cr(U2r (0, κ) +U2r (2, κ)) (14)

= CrU2r+1(1, κ) = CrU2r+2(0, κ)/κ (15)
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whereCr is the Catalan number

Cr = 1

r + 1

(
2r

r

)
(16)

and in the last two steps we have used (4). For vesicles of odd length letvoddr (κ) := V2r+1(κ)

and summing over odd values ofx instead of even gives an additional factor ofz1z2 with the
result

voddr (κ) = Cr+1U2r+2(0, κ)/κ. (17)

2.4. Theω expansion

In our analysis of the compact percolation problem it will be useful to haveVt(κ) expressed
in powers ofω = (κ − 1)/κ2. This may be achieved by first noting the identity

(κ − 1)32 − κ2 = (1− (κ − 1)z2)((κ − 1)z−2 − 1) (18)

which on using (5) leads to the difference equation

(κ − 1)U2r+2(0, κ)− κ2U2r (0, κ) = −κCT [3t(1− z−2)] + CT [3t(z2 − z−2)] = −κCr .
(19)

DefiningSr(κ) := U2r+2(0, κ)/κ the vesicle partition is determined by

vevenr (κ)/Cr = voddr (κ)/Cr+1 = Sr(κ) (20)

whereSr(κ) satisfies the difference equation

(κ − 1)Sr − κ2Sr−1 = −Cr (21)

which, forκ 6= 1, has the solution

Sr(κ) = ω−r
(

1− 1

κ − 1

r∑
s=1

Csω
s

)
. (22)

The following alternative form ofSr(κ) will be used in the application to compact
percolation. Forω 6 1

4

∞∑
s=1

Csω
s = 1

2ω
− 1−

√
1− 4ω

2ω

= 1

2ω
− 1±

(
κ − 1

2ω

)
(23)

=
 κ − 1 κ 6 2

1

κ − 1
κ > 2

(24)

and hence

Sr(κ) = ω−r κ(κ − 2)

(κ − 1)2
θ(κ − 2) +

1

κ − 1

∞∑
s=r+1

Csω
s−r (25)

whereθ(·) is the unit step function.
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3. The percolation probability for compact percolation

The percolation probability is given byP(p) = 1− Q(p), whereQ(p) is the probability
that the compact cluster seeded with a single atom on the surface is finite. Using the duality
relation between clusters and vesicles, the probability that the cluster grows fort stages and
then terminates isqVt (1/q)(pq)t which using (2) gives

Q(p) := q
∞∑
t=0

Vt(1/q)(pq)
t = qZ(pq, 1/q) (26)

where the vesicle grand partition functionZ(u, κ) is given by (2). Using (20)

Z(u, κ) =
∞∑
r=0

u2r (vevenr (κ) + uvoddr (κ))

=
∞∑
r=0

u2r (Cr + uCr+1)Sr(κ)

= Z+(u, κ)θ(κ − 2) +
1

κ − 1

∞∑
r=0

u2r (Cr + uCr+1)

∞∑
s=r+1

Csω
s−r (27)

where

Z+(u, κ) = κ(κ − 2)

(κ − 1)2

[
1 +

(
1 +

ω

u

)( ω

2u2
− 1−

√
ω(ω − 4u2)

2u2

)]
. (28)

Using (20) and (22) and noting that whenκ = 1/q, ω = pq = u, gives

Z(pq, 1/q) = (2− p)(2p − 1)

p3
θ

(
p − 1

2

)
+
q

p

[( ∞∑
r=0

Cru
r

)2

−
∞∑
r=0

Cru
r

]
(29)

and using (23)

∞∑
r=0

Cr(pq)
r =

{
1/q p 6 pc
1/p p > pc

(30)

where the critical probabilitypc = 1
2. Substituting in (26) rederives the result of [8]

P(p) =


0 p 6 pc
(2p − 1)2

p3
p > pc.

(31)

A plot of the percolation probability is shown in figure 1.

4. The mean length of finite compact clusters

We define the cluster length to be the number of particles in the shortest path from the seed to
the terminal point, including the seed (i.e.t + 1). By definition, forp < pc, the mean cluster
length is given in terms of the vesicle partitionVt(κ), defined in (1), by

L̄(p) := q
∞∑
t=0

(t + 1)Vt (1/q)(pq)
t = q ∂

∂u
(uZ(u, κ))|κ=1/q,u=pq. (32)

The unweighted sum overt givesQ(p) (see equation (26)), the probability that the cluster
is finite, and forp > pc, Q(p) < 1. Thus abovepc we call L̄(p) the ‘unnormalized’ mean
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Figure 1. A plot of the percolation probability.

length and define the normalized mean length byL(p) := L̄(p)/Q(p). This is the mean
cluster length given that the cluster is finite. Using (27)

L̄(p) = θ(p − pc)q(3− 2p)

p3
+L∗(p) (33)

where

L∗(p) = q2

p

∞∑
r=0

((2r + 1)Cru
r + (2r + 2)Cr+1u

r+1)

∞∑
s=r+1

Csu
s (34)

= q2

p

∞∑
k=1

(aku
k + bku

k+1) (35)

with

ak =
b 1

2 (k−1)c∑
r=0

(2r + 1)CrCk−r and bk =
b 1

2 (k−1)c∑
r=0

(2r + 2)Cr+1Ck−r . (36)

The sums depend on the parity ofk and we find, using Zeilberger’s algorithm [11] as
implemented by Paule and Schorn [9],

a2s+1 =
(

2s + 1
s

)(
2s + 2
s + 1

)
− 1

2s + 3

(
4s + 3
2s + 1

)
(37)

a2s+2 = 1

2

(
2s + 3
s + 1

)2

− 1

2s + 4

(
4s + 5
2s + 2

)
(38)

and

b2s+1 = 2s2 + 8s + 7

(2s + 3)(s + 2)

(
2s + 1
s

)(
2s + 4
s + 2

)
− 2(4s + 5)

(2s + 3)(s + 2)

(
4s + 3
2s + 1

)
(39)

b2s+2 =
(

2s + 3
s + 1

)(
2s + 4
s + 2

)
− 2(4s + 7)

(2s + 5)(s + 2)

(
4s + 5
2s + 2

)
. (40)

Using Mathematica to perform the summations yields, after further manipulations,

L∗(p) = 1

8p3

{
−5 + 4u + 6

√
1− 4u− 8E(16u2)

π
+

2(3− 4u)(1 + 4u)K(16u2)

π

}
. (41)
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Figure 2. A plot of the normalized mean cluster length.

The asymptotic form of this function nearpc is dominated by the logarithmic singularity of
the elliptic integralK(m) nearm = 1 and using limm1→0[K(1− m1) − 1

2 log(16/m1)] = 0
andE(1) = 1 [1] gives

L̄(p) ∼= B log |1− 2p| +C± (42)

where the superscripts refer to the approach from below and abovepc. Here

B = − 8

π
and C± = 4(3 log 2− 2)

π
∓ 4= 0.101 148. . .∓ 4 (43)

in agreement with the results conjectured in [6] based on numerical work.
By substitution,L̄(p), as given by (33), may be shown to satisfy both the low and high

density inhomogeneous second-order differential equations (16) and (18) of [6] which were
found empirically by fitting power series expansion coefficients. The part of the solution
involving elliptic integrals satisfies the homogeneous part of the differential equations and the
algebraic parts are particular solutions of the inhomogeneous equations.

The normalized mean length is shown in figure 2.

5. The mean number of wall contacts for compact clusters

In this section the expected number of contacts with the wall is obtained, including the initial
contact. The stages of the calculation are similar to those for the cluster length. Abovepc the
average is taken over only finite clusters andN̄(p) denotes the unnormalized average defined
by

N̄(p) := q ∂
∂κ
(κZ(u, κ))|κ=1/q,u=pq (44)

where theκ-derivative gives weightc+1 to a cluster havingc contacts with the wall other than
the seed. Using (27) gives

N̄(p) = θ(p − pc)q(1− 2q3)

p4
− q

p
Q(p) +N∗(p). (45)
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Here

N∗(p) = q3(1− 2p)

p

∞∑
r=0

(Cru
r +Cr+1u

r+1)

∞∑
s=r+1

(s − r)Csus−1 (46)

= q3(1− 2p)

p

∞∑
k=1

(cku
k−1 + dku

k) (47)

with

ck =
b 1

2 (k−1)c∑
r=0

(k − 2r)CrCk−r and dk =
b 1

2 (k−1)c∑
r=0

(k − 2r)Cr+1Ck−r . (48)

Using Zeilberger’s algorithm [11] we find

c2s+1 =
(

4s + 3
2s + 1

)
−
(

2s + 1
s

)(
2s + 2
s + 1

)
(49)

c2s+2 =
(

4s + 5
2s + 2

)
− s + 2

2s + 3

(
2s + 3
s + 1

)2

(50)

and

d2s+1 = 4s2 + 16s + 13

(2s + 3)(s + 2)

(
4s + 3
2s + 1

)
− 4s2 + 14s + 11

2(2s + 3)(s + 2)

(
2s + 1
s

)(
2s + 4
s + 2

)
(51)

d2s+2 = 2(2s2 + 10s + 11)

(2s + 5)(s + 2)

(
4s + 5
2s + 2

)
−
(

2s + 3
s + 1

)(
2s + 4
s + 2

)
. (52)

Use of Mathematica to evaluate the sums in (47) gives

N∗(p) = (1− 2p)

8p4

{
1− 4u− 2(1− 2u)

√
1− 4u +

4u(1 + 2u)√
1− 4u

+
8E(16u2)

π

− 2(3− 4u)(1 + 4u)K(16u2)

π

}
. (53)

Combining (44) and (53) we obtain the asymptotic form nearpc as

N̄(p) ∼= 2 +
16

π
(1− 2p) log |1− 2p|. (54)

We note that the discontinuity arising from the fourth term in the bracket is balanced by that
from the first term of (44) but that the critical point is marked by an infinite derivative which
occurs just beforēN(p) passes through its maximum value. A graph ofN̄(p)/Q(p), the mean
number of contacts given that the cluster is finite, is shown in figure 3. This surprisingly never
exceeds three which implies that the ‘dry wall’ condition acts as a strong repulsion away from
the wall. We defer consideration of a ‘damp wall’ condition which would increase the number
of contacts to a later date.

6. Differential equations satisfied by the cluster properties

In [6] it was conjectured on the basis of differential approximant techniques that the mean
cluster length functions above and belowpc satisfy inhomogeneous second-order differential
equations with polynomial coefficients. The equations had the same homogeneous part in the
two regions. The degree of the coefficients was such that it was thought to be impossible to
express the mean length in terms of previously studied functions. For example, the coefficient
of the second derivative was of degree six. However the singular points and their exponents
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Figure 3. A plot N̄(p)/Q(p), the mean number of wall contacts given that the cluster is finite.

were obtained (table 2 of [6]). The present work shows that we were unduly pessimistic and
in fact it may be verified by direct substitution that the conjectured equations ((16) and (18) of
[6]) are satisfied by (33).

The cluster sizeS(p) in the regionp < pc was found to be [6]

S(p) = 1− p
1− 2p

. (55)

Abovepc no such simple solution was found but it was conjectured that the unnormalized
mean sizēS(p) satisfies a differential equation similar to that for the mean length. Inspired by
our exact solution for the mean length we show below that the conjectured equation may also
be solved in terms of hypergeometric functions.

We begin with the mean length and, guided by our exact solution, show that a sequence of
substitutions reduces equation (16) of [6] to a second-order equation having only four regular
singular points which is solved by a Heun function [10]. A further transformation then produces
a hypergeometric equation.

DefiningL̃ = p3L̄ we find that equation (16) of [6] takes the form

p(1− p)(1− 2p)(1 + 4p − 4p2)
d2L̃

dp2
+ (1− 2p + 2p2)(1− 12p + 12p2)

dL̃

dp

+8(1− 2p)(1− 2p + 2p2)L̃ = p2(9− 12p + 12p2) (56)

which has the polynomial solution(1− 8p − 4p2)/8. Substituting

p = 1−√1− 4u

2
(57)

gives the algebraic part of (41). The remaining combination of elliptic integrals must therefore
be a solution of the homogeneous part of (56). This is indeed the case as may be seen by
changing the variable in (56) tou = p(1− p) and cancelling a factor

√
1− 4u, which gives

u(1− 16u2)
d2L̃(h)

du2
+ (1− 16u + 16u2)

dL̃(h)

du
+ 8(1− 2u)L̃(h) = 0. (58)

The solution of this equation which is regular at the origin is the Heun function [10]
F(−1,−2;−1,−1, 1,−3; 4u) and by matching atu = 0, equation (41) may be rewritten
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as

L∗(p) = 1

8p3

{
− 5 + 4p(1− p) + 6

√
1− 4p(1− p)

−F(−1,−2;−1,−1, 1,−3; 4p(1− p))
}
. (59)

It may be verified by substitution that

F(−1,−2;−1,−1, 1,−3; 4u) = 8E(16u2)

π
− 2(3− 4u)(1 + 4u)K(16u2)

π
. (60)

The parameters of the Heun function satisfy the conditions for the transformation [10] VII(9d)
to a hypergeometric function thus

F(−1,−2;−1,−1, 1,−3; 4u) = (1 + 4u) 2F1

(
−1

2
,

3

2
; 1; 16u

(1 + 4u)2

)
. (61)

The variableu = p(1−p), the use of which gave rise to the essential reduction in degree of
the polynomial coefficients above, arises naturally in the combinatorial context of the previous
sections.ut is the weight attached to a cluster of lengtht in the absence of the wall and the
variableω, which is the function of the wall fugacity which arises in the solution of the vesicle
difference equation (22), is also equal top(1− p) whenκ = 1/q, the compact percolation
condition. The combinatorial significance of theω variable will be discussed in a subsequent
paper [3].

A similar process applied to thep > pc differential equation (18) of [6], which was
conjectured from the high density series expansion, leads to (56) withp replaced by 1− q and
a modified inhomogeneous part which takes account of the step function in (32).

Turning now to the unnormalized mean size of clustersS̄(p) we make a transformation
similar to that for the mean length but allowing for a pole atq = 1

2 as in thep < pc function.
Thus substituting

S̄ = S̃

(1− q)3(1− 2q)
(62)

in equation (12) of [6] gives

q(1− q)(1− 2q)(1 + 4q − 4q2)
d2S̃

dq2
+ 2(1− 3q + 23q2 − 40q3 + 20q4)

dS̃

dq

+4(1− 2q)(1− 8q + 8q2)S̃ = 2− 2q − 6q2 + 4q3 + 30q4 − 48q5 + 24q6

(63)

which has the polynomial solutionφ(q) = 1
2(−1 + 4q − 6q2 + 2q3 + 2q4). Writing

S̃ = φ(q) + S̃(h) and changing the variable tou = q(1 − q) in the homogeneous part of
(63) gives

u(1− 16u2)
d2S̃(h)

du2
+ 2(1− 4u + 16u2)

dS̃(h)

du
+ 4(1− 8u)S̃(h) = 0. (64)

The solution which is regular at the origin is the Heun function

F(−1,−1;−2,−1, 2,−3; 4u) = (1 + 4u) 2F1

(
−1

2
,

3

2
; 2; 16u

(1 + 4u)2

)
. (65)

Combining these results leads to the following conjecture for the cluster size abovepc

S̄(q) = 1

2(1− 2q)(1− q)3
{

2φ(q) + (1 + 4q(1− q)) 2F1

(
−1

2
,

3

2
; 2; 16q(1− q)

(1 + 4q(1− q))2
)}
(66)
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Figure 4. A plot of the normalized mean cluster size.

which on expansion in powers ofq is in agreement with the fifty terms given in [6]. As in the
case of the mean cluster length, the hypergeometric function in [66] can also be expressed [1]
in terms of elliptic integrals via

2F1

(
−1

2
,

3

2
; 2; x

)
= 4

3πx
{(1− x)K(x)− (1− 2x)E(x)}. (67)

Using equation (15.3.11) of [1] the asymptotic form of (66) as the critical probability is
approached from above is

S̄(q) ∼= 1

1− 2q
{A− +B−(1− 2q)4 log(1− 2q)} (68)

whereA− = 32
3π − 1

2 = 2.895 305 453. . . andB− = 8
π

. The estimate ofA− in [6] differs from
the exact value by 1 in the sixth decimal place.

The normalized mean cluster size is shown in figure 4.

7. Conclusions

We conclude by summarizing the new results obtained. The compact percolation probability
previously solved is shown to be related to the partition function of a directed vesicle above
a wall. By recasting the vesicle partition function in a new form and through a novel use of
the Zeilberger algorithm, we have been able to compute the first derivatives of the partition
function and hence calculate the mean length of finite clusters and mean number of surface
contacts.

These new results establish previously conjectured results for the differential equation
satisfied by the mean cluster length. The form found for the mean length enabled the
conjectured differential equation satisfied by the mean size function abovepc to be solved
in terms of a hypergeometric function. The asymptotic behaviour of the mean size and mean
length of clusters, in the neighbourhood of the critical point, deduced from our closed form
solutions is in agreement with earlier numerical work.
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